*Changes may occur without prior notice.

Angular Sensor

ASBR - Angular Sensor - Solid Shaft Preliminary Datasheet*
 *Changes may occur without prior notice.

DYIIAPAR

Specifications

Mechanical characteristics

Shaft diameter *	$6 \mathrm{~mm}(0,236 \mathrm{pol})$
Recommended fixing screw	M 4
Shaft rotation range	Unlimited
${ }^{*}$ Another option on demand	

Electrical characteristics

DC Supply	10 a 30 VDC .
Linear output types*	0,5 V a 4,5 V
	0 Va 5 V
	4 mA a 20 mA
Output load voltage	Minimum load $>10 \mathrm{~K} \Omega$
Output load current	Maximum load < 250Ω
Power consumption (without load)	$<10 \mathrm{~mA}$
DAC resolution	0,088 ${ }^{\text {(}} 12$ bits)
Characteristic curves (signal output profiles)*	Fully Programmable
	- Ascending
	- Descending - Trapezoidal
	- N module
Electrical protection	Reverse polarity, short circuit and overvoltage
Angular measuring range	18° a 360°

*Another option on demand

Ambiental characteristics

Operational temperature	$-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Storage temperature	$-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Ingress Protection code (IP)	IP 69
Conformity	RoHS Compliant

ASBR - Angular Sensor - Solid Shaft Preliminary Datasheet*
 *Changes may occur without prior notice.

CONFIGURATOR - SOLIF SHAFT

Serie	Code 1	Code 2	Code 3	Code 4	Code 5	Code 6	Code 7	Code 8	Code 9	Code10	
$\begin{aligned} & \text { 隠 } \end{aligned}$	$\begin{aligned} & \frac{y}{1} \\ & \frac{\pi}{3} \\ & \frac{0}{0} \\ & \end{aligned}$	$\begin{aligned} & \frac{4}{\pi} \\ & \stackrel{N}{\omega} \end{aligned}$			0 0 0 0 0 0 0 0 0 0 0	吕 를 0			$\begin{aligned} & \stackrel{0}{\circ} \\ & \frac{0}{0} \\ & \frac{\pi}{0} \\ & \text { ì } \\ & \text { in } \end{aligned}$		Description
ASBR	UR									$\begin{aligned} & 0 \\ & \text { A } \end{aligned}$	No accessories Solid Shaft lever
									0		Standard Curve Double Mirrored Curve (trapezoidal) Another option on demand
								0			No connector
								N			Deutsch 3 pins, male
								P			Delphi 3 pins, male
								S			Superseal 3 pins male
								*			Another available connector
							1				0,1 m
							*				Another available length
						A					$0,5 \mathrm{Va} 4,5 \mathrm{~V}$ (Voltage)
						B					0 V a,0 V (Voltage)
						C					4-20 mA (Current)
						*					Another available amplitude
					$\begin{gathered} 018^{\circ} \mathrm{a} \\ 360^{\circ} \end{gathered}$						Fully programmable for any range within the limits min. $\left(0-18^{\circ}\right)$ or max. $\left(0-360^{\circ}\right)$
				$\begin{gathered} 000^{\circ} \text { a } \\ 359^{\circ} \\ \hline \end{gathered}$							Fully programable for any specific angle (between 0 and 359으)
			H								Clockwise - CW
		S									Circular Housing + 6 mm Solid Shaft
		5									Rectangular Housing +6 mm Solid Shaft

* Another option on demand

Codification example

ASBR USA 000120 A 1S 00 - Angular Sensor with circular housing, 6 mm solid shaft (include 3 mm recess and drilling), counterclockwise increment, 120° measuring range with center in $0^{\circ}, 0,5$ a $4,5 \mathrm{~V}$ output, cable with $0,1 \mathrm{~m}$ length and Superseal connector.

ASBR - Angular Sensor - Solid Shaft Preliminary Datasheet*

dvinapas

*Changes may occur without prior notice.

DIMENSION - SOLID SHAFT

CODES 1 AND 2 - MECHANICS AND SHAFT

- U - Circular Housing, solid shaft only (S)

Lever (Opcional): p/ Cód. $10=$ "A"

Figure 1 - Circular housing details (solid shaft)

- \quad R - Rectangular Housing, solid shaft (S)

DIMENSIONS (mm)

Figure 2 - Rectangular housing details (solid shaft)

ASBR - Angular Sensor - Solid Shaft Preliminary Datasheet*
 *Changes may occur without prior notice.

DYIAPAR

MECHANICAL REFERENCE - SOLID SHAFT

CODE 3 - SIGNAL INCREMENT DIRECTION

The SIGNAL INCREMENT DIRECTION is the rotational direction (Clockwise: "CW', or Counterclockwise: "CCW') for the signal increment range (from the minimal to the maximal amplitude, either in voltage or current), established in the measuring range (useful signal zone, as defined in 'Code 5' section).

The SIGNAL INCREMENT DIRECTION is referenced in relation to the top view of the sensor (resin side of housing or the opposite view of the shaft), acc. the Fig. 3.

Figure 3 - Signal Increment Direction (examples)

CODE 4 - MEASURING RANGE CENTER

The MEASURING RANGE CENTER is a reference for the positioning (offset) of the Measuring range (as definition in 'Code 5', below), which consists of 2 symmetric segments. The Measuring Range CENTER is measured from the origin (line over the sensor cable), clockwise, through the top view of the sensor (see Fig. 4).

Figure 4 - Representation of Measuring range (E) Center (C)

ASBR - Angular Sensor - Solid Shaft Preliminary Datasheet*

DYIIAPAR

*Changes may occur without prior notice.

In order Measuring Range Center can be a reference for the sensor output signals, it must be related to the SHAFT positioning. For the solid-shaft sensor, the referencing is through the milled RECESS of shaft, ORIENTED to the Measuring Range Center, also referenced from the sensor cable. See examples in Fig. 5.

Figure 5 - Referencing the solid shaft according to the Measuring Range Center

Sometimes, it's interesting to know the signal magnitude precisely in the Measuring Range Center, as shown in Fig. 6, below.

Figure 6 - Signal magnitude in the Measuring Range Center

The signal magnitude in the Measuring Range Center is calculated through the Equation 1, as follows.
signal magnitude $($ Measur. Range Center $)=\left(\frac{\text { Signal }_{\text {máx }}-\text { Signal }_{\text {mín }}}{2}\right)+$ Signal $_{\text {mín }}$

ASBR - Angular Sensor - Solid Shaft Preliminary Datasheet*

CODE 5 - MEASURING RANGE

The MEASURING RANGE is the linear output region of the sensor signal (useful signal zone). In it occurs the proportional variation of the signal in relation to the sensor shaft movement. The Measuring Range has 2 segments, both referenced from the Center of Measuring Range. In addition to the example given in Fig. 4 (circular housing), see the Measuring Range in the Fig. 7, below (this time for the rectangular housing).

Figure 7 - Representation of Measuring Range

The measuring range is fully programmable for any condition between the minimum (0 a 18°) and maximum (0 a 360°).

Conceptual Examples

- 120° Measuring Range: 2 segments of 60° having as axis of symmetry on the Measuring Range Center (acc. to Code 4; Fig. 4 and 6).
- 60° Measuring Range: 2 segments of 30° having as axis of symmetry on the Measuring Range Center.

ASBR - Angular Sensor - Solid Shaft Preliminary Datasheet*

*Changes may occur without prior notice.

Codification examples and meaning

- ASBR US A 000120 A 1S 00

Signal Increment Direction = Counterclockwise
Measuring Range Center $=0^{\circ}$ (coincident with the sensor output cable)
Measuring Range $=120^{\circ}\left(2\right.$ segments of $\left.60^{\circ}\right)$
Output Type ="A" (0,5 V a 4,5 V)

Figure 8 - Representation for the codification ASBR US A 000120 A $1 S 00$

ASBR - Angular Sensor - Solid Shaft Preliminary Datasheet*

DYITAPAR

*Changes may occur without prior notice.

- ASBR US H 180120 A 1S 00

Signal Increment Direction = Clockwise
Measuring Range Center $=180^{\circ}$ (symmetrical opposite with the sensor output cable)
Measuring Range $=120^{\circ}\left(2\right.$ segments of $\left.60^{\circ}\right)$
Output Type = "A" ($0,5 \mathrm{~V}$ a $4,5 \mathrm{~V}$)

Figure 9 - Representation for the codification ASBR US H 180120 A 1S 00

ASBR - Angular Sensor - Solid Shaft Preliminary Datasheet*

*Changes may occur without prior notice.

CODE 6 - OUTPUT TYPE

Regarding to the type of output signal, the angular sensor has 2 options.

- Output Voltage
- A: 0,5 a $4,5 \mathrm{~V}$
- B: 0 a $5,0 \mathrm{~V}$
- Output Current: 4 a 20mA

Other amplitudes are available on request, as the output types are fully programmable.

EXAMPLES OF CHARACTERISTIC CURVES*

*Other curves on demand

Figure 10 - Measuring Range of 120° with Center in 0°, Signal Increment Direction: clockwise (0,5-4,5 V)

ASBR - Angular Sensor - Solid Shaft Preliminary Datasheet*

*Changes may occur without prior notice.

Figure 12 - Measuring Range of 120° with Center in 0°, Signal Increment Direction: counterclockwise (and Measuring Range Center 180°, signal increment direction: clockwise), mirrored double-curve (trapezoidal), 4-20 mA

Figure 13 - Measuring Range of 60° with Center in $45^{\circ}, 135^{\circ}, 225^{\circ}$ and 315°, four module (4 curves),
Signal Increment Direction: clockwise, 4-20 mA

ASBR - Angular Sensor - Solid Shaft Preliminary Datasheet*

druapar

*Changes may occur without prior notice.

PINOUT

CODE 8 - CONNECTOR

- $\quad \mathrm{N}$ - Deutsch Male

Pin	Function
A	Channel $\mathrm{A}+$
B	GND
C	VCC

- P - Delphi Male

- \quad S - Superseal Male

- $\quad 0$ - Cabo (without connector)

Specialty Product Technologies - Indústria e Comércio
Avenida Tamboré, 1077 - Tamboré - Barueri - SP
Telephone: +55 11 3616-0150 WhatsApp: +55 11 95301-6658
atendimento@sptech.com
All rights reserved.

