
ASBR – Sensor Angular – Eixo Hub Folha de dados Preliminar* *Alterações poderão ocorrer sem prévio aviso.

Sensor Angular

*Alterações poderão ocorrer sem prévio aviso.

CARACTERÍSTICAS

Características mecânicas

Diâmetro de eixo*	9,5mm (com ressalto interno)
Parafuso fixação recomendado	M5
Faixa de rotação do eixo	180° (com retorno por mola)
*Outras opções sob-consulta	

Características elétricas

Alimentação	10 a 30 VCC.
Tipos de Saída Linear*	0,5 V a 4,5 V 0 V a 5 V 4 mA a 20 mA
Carga saída em Tensão	Carga mínima > 10 KΩ
Carga saída Corrente	Carga máxima < 250 Ω
Consumo de corrente (sem cargas)	< 10 mA
Resolução DAC	0,088° (12 bits)
Curvas características (formatos de saída)*	Totalmente Parametrizável ex.: - Ascendente - Descendente - Trapezoidal - Módulo N
Proteção elétrica	Inversão de polaridade, curto- circuito e sobretensão
Faixa de medição angular	18° a 180°

^{*}Outras opções sob-consulta

Características ambientais

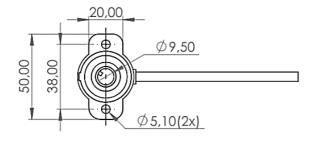
Temperatura de operação	-10°C até 80°C		
Temperatura de armazenamento	-10°C até 80° C		
Proteção IP	IP69		
Conformidade	RoHS Compliant		

ASBR – Sensor Angular – Eixo Hub Folha de dados Preliminar* *Alterações poderão ocorrer sem prévio aviso.

CONFIGURADOR - EIXO SEMI-VAZADO (HUBSHAFT)

Série	Cód. 1	Cód. 2	Cód. 3	Cód. 4	Cód. 5	Cód. 6	Cód. 7	Cód. 8	Cód. 9	Cód. 10	
ASBR	Mecânica	Еіхо	Sentido de Incremento	Centro da Faixa de Medição	Faixa de Medição	Tipo de Saída	Comprimento de Cabo	Conector	Código Especial	Acessório	Descrição
										0	Sem acessório
										Α	Alavanca para eixo sólido
									0		Curva Padrão
									D		Curva dupla espelhada (trapezoidal)
									*		Outras opções disponíveis
								0			Sem conector
								N			Deutsch 3 pinos, macho
								Р			Delphi 3 pinos, macho
								S			Superseal 3 pinos macho
								*			Outros conectores disponíveis
							1				0,1 m
							*				Outros comprimentos disponíveis
						Α					0,5 V a 4,5 V (Tensão)
						В					0 V a 5,0 V (Tensão)
						С					4-20 mA (Corrente)
						*					Outras amplitudes disponíveis
					018° a 180°						Totalmente parametrizável para qualquer <u>faixa</u> dentro dos limites mín. (0 a 18°) e máx. (0 a 180°)
				009° a 171°							Totalmente parametrizável para qualquer <u>ângulo específico</u> (entre 9 e 171°)
			Н								Horário – CW
			А								Anti-Horário – CCW
ASBR	Н	Н									Corpo Padrão + Eixo <i>Hub</i> (Semi- Vazado) e faixa de rotação do eixo até 180° (com retorno por mola)

^{*} Outras opções sob consulta


*Alterações poderão ocorrer sem prévio aviso.

DIMENSÕES – EIXO SEMI-VAZADO (HUBSHAFT)

CÓDIGOS 1 E 2 – MECÂNICA E EIXO

H – Corpo Padrão, Eixo Semi-Vazado (Hubshaft)

DIMENSÕES (mm)

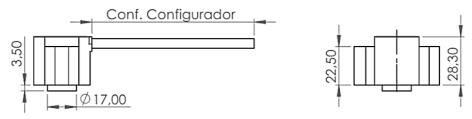


Figura 1 - Detalhamento para corpo único, eixo semi-vazado (hubshaft)

REFERÊNCIA MECÂNICA - EIXO SEMI-VAZADO (HUBSHAFT)

CÓDIGO 3 - SENTIDO DE INCREMENTO

O **SENTIDO DE INCREMENTO** é o sentido de rotação (Horário: "*CW*", ou Anti-Horário: "*CCW*") para a faixa de incremento do sinal (da mínima para a máxima amplitude, seja em tensão ou corrente), estabelecida na Faixa de Medição (zona útil do sinal, cfr. a definição do 'Cód. 5', abaixo).

O **SENTIDO DE INCREMENTO** está referenciado em relação à vista superior do sensor (lado resinado do corpo, ou vista inversa à do eixo), conforme a Fig. 2.

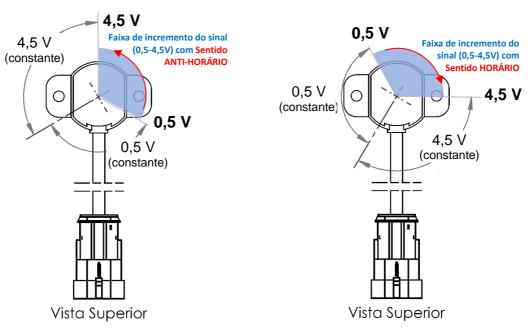


Figura 2 - Sentido de Incremento (exemplos)

*Alterações poderão ocorrer sem prévio aviso.

CÓDIGO 4 - CENTRO DA FAIXA DE MEDIÇÃO

O **CENTRO DA FAIXA DE MEDIÇÃO** é uma referência para o posicionamento (*offset*) da Faixa de Medição (cfr. a definição do 'Cód. 5', seção abaixo), que é constituída por 2 segmentos simétricos. O **CENTRO** da Faixa de Medição mede-se a partir da <u>Origem</u>, que faz um ângulo de 150° no sentido <u>horário</u> com o cabo do sensor, através da sua vista superior (lado da resina), como mostra a Fig. 3.

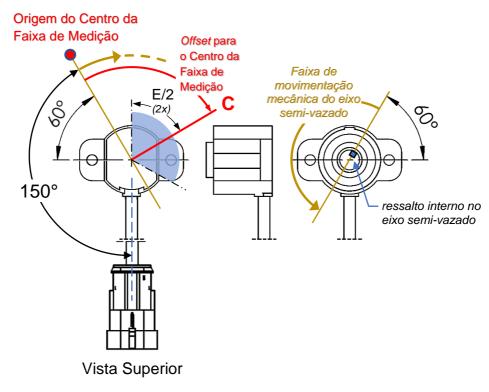


Figura 3 - Representação do Centro (C) da Faixa de Medição (E)

O ângulo de 150° tem na verdade relação direta com o posicionamento do <u>ressalto interno</u> no eixo semi-vazado na sua posição de repouso ("*stop*"), já que a versão de eixo semi-vazado possui sistema de <u>retorno por mola</u>. A partir dessa posição, o eixo (sob a tensão da mola) pode ser rotacionado mecanicamente por 180°.

Dada essa restrição de movimento mecânico do eixo (para a viabilidade do seu retorno por mola), existe também uma faixa condizente para a própria Faixa de Medição. Por sua vez, o Centro da Faixa de Medição poderá ocupar qualquer posição (ângulo específico) entre 9° e 171° (a partir da Origem e medido no sentido horário).

Logicamente, existe uma relação de compromisso entre a Faixa de Medição e o seu Centro, que no sensor de eixo semi-vazado é regida pela Equação 1.

$$\left(\frac{Faixa\ Med.}{2}\right) \le Centro\ da\ Faixa\ de\ Medição \le \left[180 - \left(\frac{Faixa\ Med.}{2}\right)\right]$$
 (Eq. 1)

Às vezes, interessa saber a magnitude do sinal justamente no Centro da Faixa de Medição, como mostra a Fig. 4, a seguir.

*Alterações poderão ocorrer sem prévio aviso.

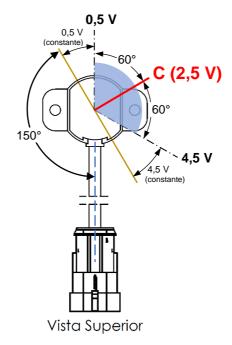


Figura 4 - Magnitude do sinal no Centro da Faixa de Medição

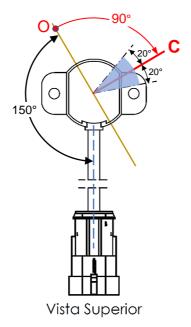
A magnitude do sinal no Centro da Faixa de Medição pode ser obtida através da Equação 2.

$$magnitude\ do\ sinal\ (Centro\ Faixa\ Med.) = \left(\frac{Sinal\ _{m\acute{a}x} - Sinal\ _{m\acute{i}n}}{2}\right) + Sinal\ _{m\acute{i}n} \tag{Eq.\ 2}$$

CÓDIGO 5 - FAIXA DE MEDIÇÃO

A FAIXA DE MEDIÇÃO é a região de saída linear do sinal do sensor (zona útil do sinal). Nela ocorre a variação proporcional do sinal para a movimentação do eixo do sensor. A Faixa de Medição tem 2 segmentos, ambos referenciados a partir do seu Centro ("C"), conforme a Fig. 5. A Faixa de Medição é totalmente parametrizável para qualquer faixa dentro dos limites mínimo (0 a 18°) e máximo (0 a 180°).

Figura 5 - Representação da Faixa de medição


*Alterações poderão ocorrer sem prévio aviso.

Exemplo de codificação e significado

ASBR HHH 090 040 A 1000

Sentido de incremento = Horário
Centro da Faixa de Medição = 90° (metade do curso de movimentação mecânica do eixo, de 180°)
Faixa de Medição = 40° (2 segmentos de 20°)
Tipo de Saída = "A" (0,5 V a 4,5 V)

Esta codificação pode ser ilustrada pela Fig. 6, a seguir (a coincidência nas cores entre a imagem e o gráfico é proposital).

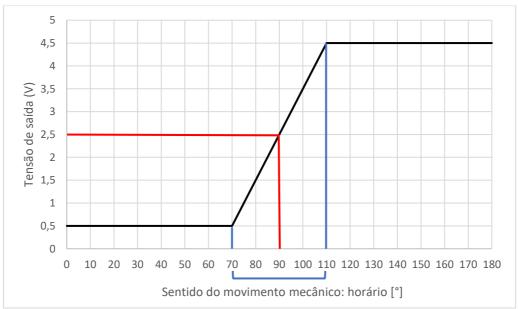


Figura 6 - Faixa de Medição 40°, Centro da Faixa de Medição em 90°, Sentido de incremento horário (0,5 a 4,5 V). Note-se que o eixo da movimentação mecânica atinge apenas 180° (restrição de eixo semi-vazado com retorno por mola)

*Alterações poderão ocorrer sem prévio aviso.

CÓDIGO 6 - TIPO DE SAIDA

No que se refere ao tipo de saída do sinal, o sensor angular dispõe de 2 tipos.

- Saída em Tensão
 - A: 0,5 a 4,5 V
 - B: 0 a 5,0 V
- Saída em Corrente: 4 a 20mA

Outras amplitudes são disponíveis sob consulta, uma vez que o tipo de saída é totalmente parametrizável.

EXEMPLOS DE FORMATOS DE SINAL*

*Outros formatos sob consulta

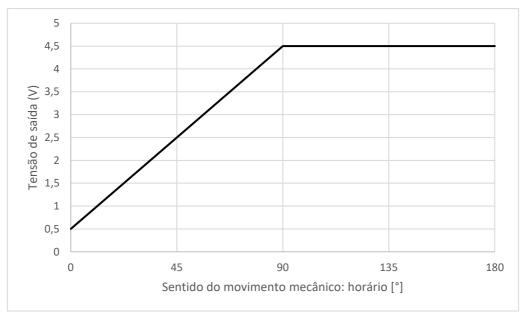


Figura 7 - Faixa de Medição de 90°, Centro da Faixa de Medição em 45°, Sentido de incremento horário, saída 0,5 a 4,5 V

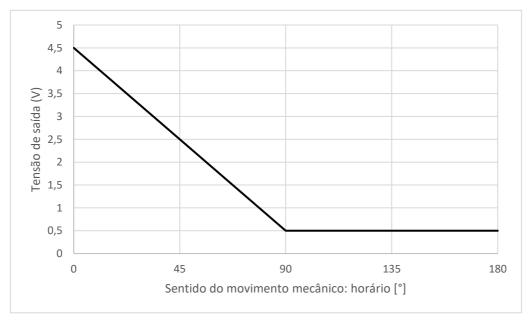


Figura 8 - Faixa de Medição de 90°, Centro da Faixa de Medição em 45°, Sentido de incremento anti-horário, saída 0,5 a 4,5 V

*Alterações poderão ocorrer sem prévio aviso.

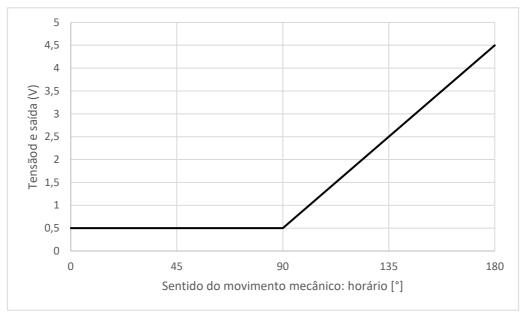


Figura 9 - Faixa de Medição de 90°, Centro da Faixa de Medição em 135°, Sentido de incremento horário, saída 0,5 a 4,5 V

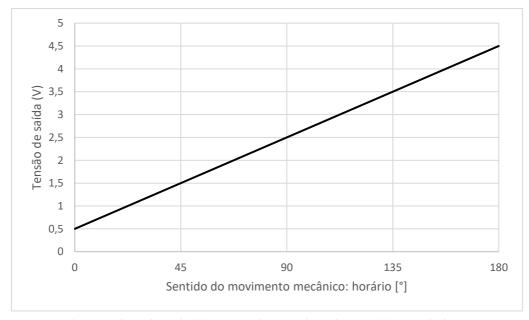
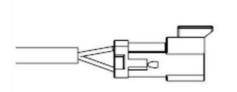
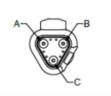


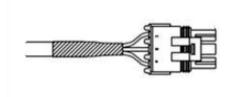
Figura 10 - Faixa de Medição de 180°, Centro da Faixa de Medição em 90°, Sentido de incremento horário, saída 0,5 a 4,5 V

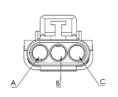



*Alterações poderão ocorrer sem prévio aviso.

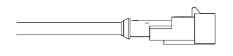
PINAGEM

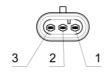
CÓDIGO 8 – CONECTOR


N - Deutsch Macho

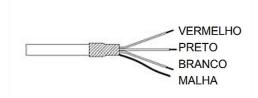


Pino	Função
A	Canal A+
В	GND
С	VCC


P - Delphi Macho



Pino	Função
A	VCC
В	GND
С	Canal A+


S - Superseal Macho

Pino	Função
1	GND
2	VCC
3	Canal A+

0 - Cabo (sem conector)

Cor	Função
Preto	GND
Vermelho	VCC
Branco	Canal A+

Dynapar - Brasil

Avenida Tamboré, 1077 - Tamboré - Barueri - SP

CEP: 06460-000

Telefone: +55 11 3616-0150 WhatsApp: +55 11 95301-6658 atendimento@sptech.com www.dynaparencoders.

Todos os direitos reservados.