ASBR - Angular Sensor - Hub Shaft

 Preliminary Datasheet**Changes may occur without prior notice.

Angular Sensor

ASBR - Angular Sensor - Hub Shaft Preliminary Datasheet*

*Changes may occur without prior notice.

CARACTERÍSTICAS

Mechanical characteristics

Shaft diameter *	$9,5 \mathrm{~mm}$ (with internal rebound)
Recommended fixing screw	M 5
Shaft rotation range	180° (with spring return)
${ }^{*}$ Another option on demand	

Electrical characteristics

DC Supply	10 a 30 VCC .
	0,5 V a 4,5 V
Linear output types*	0 Va 5 V
	4 mA a 20 mA
Output load voltage	Minimum load > $10 \mathrm{~K} \Omega$
Output load current	Maximum load < 250Ω
Power consumption (without load)	$<10 \mathrm{~mA}$
DAC resolution	0,088 ${ }^{\text {(12 bits) }}$
Characteristic curves (signal output profiles)*	Fully Programmable
	ex.:
	- Ascending
	- Descending
	- Trapezoidal
	- N module
Electrical protection	Reverse polarity, short circuit and overvoltage
Angular measuring range	18° a 180°

* Another option on demand

Ambiental characteristics

Operational temperature	$-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Storage temperature	$-10^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$
Ingress Protection code (IP)	IP 69
Conformity	RoHS Compliant

ASBR - Angular Sensor - Hub Shaft Preliminary Datasheet*
 *Changes may occur without prior notice.

CONFIGURATOR - EIXO SEMI-VAZADO (HUBSHAFT)

Serie	Code 1	Code 2	Code 3	Code 4	Code 5	Code 6	Code 7	Code 8	Code 9	Code 10	
$\begin{aligned} & \text { 給 } \end{aligned}$		$\begin{aligned} & \stackrel{4}{0} \\ & \stackrel{0}{m} \end{aligned}$				$\begin{aligned} & \stackrel{\rightharpoonup}{\overrightarrow{2}} \\ & \stackrel{\rightharpoonup}{Z} \\ & 0 \end{aligned}$					Description
ASBR										$\begin{aligned} & 0 \\ & \mathrm{~A} \end{aligned}$	No accessories Solid Shaft lever
									0		Standard Curve Double Mirrored Curve (trapezoidal) Another option on demand
								0			No connector
								N			Deutsch 3 pins, male
								P			Delphi 3 pins, male
								S			Superseal 3 pins male
								*			Another available connector
							1				0,1 m
							*				Another available length
						A					$0,5 \mathrm{Va} 4,5 \mathrm{~V}$ (Voltage)
						B					$0 \vee \mathrm{a}, 0 \mathrm{~V}$ (Voltage)
						C					4-20 mA (Current)
						*					Another available amplitude
					$\begin{array}{\|c} 018^{\circ} \mathrm{a} \\ 180^{\circ} \end{array}$						Fully programmable for any range within the limits min. ($0-18^{\circ}$) or max. $\left(0-360^{\circ}\right)$
				$\begin{array}{\|c} \hline 009^{\circ} \mathrm{a} \\ 171^{\circ} \\ \hline \end{array}$							Fully programmable for any specific angle (between 0 and 359ㅇ)
			H								Clockwise - CW
			A								Counterclockwise - CCW
	H	H									Standard Housing + Hubshaft with spring return and rotation range up to 180°

[^0]
ASBR - Angular Sensor - Hub Shaft Preliminary Datasheet*

*Changes may occur without prior notice.
DIMENSION - HUBSHAFT

CODES 1 E 2 - MECHANICS AND SHAFT

- H - Standard Housing, Hub shaft

Figure 1 - Standard housing details (hub shaft)

MECHANICAL REFERENCE - HUB SHAFT

CODE 3 - SIGNAL INCREMENT DIRECTION

The SIGNAL INCREMENT DIRECTION is the rotational direction (Clockwise: "CW', or Counterclockwise: "CCW') for the signal increment range (from the minimal to the maximal amplitude, either in voltage or current), established in the measuring range (useful signal zone, as defined in ‘Code 5’ section).

The SIGNAL INCREMENT DIRECTION is referenced in relation to the top view of the sensor (resin side of housing or the opposite view of the shaft), acc. the Fig. 2.

Figure 2 - Signal Increment Directiont (examples)

ASBR - Angular Sensor - Hub Shaft Preliminary Datasheet*
 *Changes may occur without prior notice.

CODE 4 - MEASURING RANGE CENTER

The MEASURING RANGE CENTER is a reference for the positioning (offset) of the Measuring Range (as definition in 'Code 5', below), which consists of 2 symmetric segments The Measuring Range CENTER is measured from the Origin, which makes a 150° angle clockwise with the sensor cable, through the top view of the sensor (resin side), as shown in Fig. 3.

Figure 3-Representation for the Center (C) of Measuring Range (E)

The 150° angle is actually directly related to the positioning of the internal rebound in the hub shaft for its rest position ("stop"), since hub shaft version has a return spring system. From this position, the shaft (under spring tension) can be rotated mechanically through 180°.

Given this mechanical movement restriction of the shaft (for the viability of its spring return), there is a mathematical relationship to the Measuring Range itself. Besides, the Measuring Range Center may be located in any position (specific angle) between 90 and 171° (from the Origin and measured clockwise).

Logically, there is a compromise relationship between the Measuring Range and its Center, which in the hub shaft sensor is defined by the Equation 1.

$$
\begin{equation*}
\left(\frac{\text { Measur. Range }}{2}\right) \leq \text { Measuring Range Center } \leq\left[180-\left(\frac{\text { Measur.Range }}{2}\right)\right] \tag{Eq.1}
\end{equation*}
$$

Sometimes, it's interesting to know the signal magnitude precisely in the Measuring Range Center, as show in Fig. 4, below.

ASBR - Angular Sensor - Hub Shaft Preliminary Datasheet*
 *Changes may occur without prior notice.

Figure 4 - Signal magnitude in the Measuring Range Center

The signal magnitude in the Measuring Range Center is calculated through the Equation 2, as follows.
Signal magnitude (Measur. Range Center $)=\left(\frac{\text { Signal }_{\text {máx }}-\text { Signal }_{\text {mín }}}{2}\right)+$ Signal $_{\text {min }}$

CODE 5 - MEASURING RANGE

The MEASURING RANGE is the linear output region of the signal sensor (useful signal zone). In it occurs the proportional variation of the signal in relation the movement of the sensor shaft. The Measuring range has 2 segments, both referenced from the measuring range center (" C "), as seen in Figure 5. The Measuring Range is fully programmable for any condition between the minimal (0 to 18°) and maximum (0 to 180°) range.

Figure 5-Representation of Measuring Range

ASBR - Angular Sensor - Hub Shaft Preliminary Datasheet*

Codification examples and meaning

- ASBR HHH 090040 A 1000

Direction of increment = Clockwise
Measuring range center $=90^{\circ}$ (half of mechanical movement range shaft, 180ㅇ)
Measuring range $=40^{\circ}\left(2\right.$ segments of $\left.20^{\circ}\right)$
Output Type $=$ " A " ($0,5 \mathrm{~V}$ a $4,5 \mathrm{~V}$)
This codification could be illustrated by Figure 6, below (the coincidence in colors between the image and the graph is intentional).

Top View

Figure 6 - Measuring range of 40° with center in 90°, Clockwise increment (0,5 a 4,5 V). Note that the mechanical drive shaft only reaches 180° (hub shaft restriction with spring return)

ASBR - Angular Sensor - Hub Shaft Preliminary Datasheet*

*Changes may occur without prior notice.

CODE 6 - OUTPUT TYPE

Regarding to the type of output signal, the angular sensor has 2 types.

- Output Voltage
- A: 0,5 a $4,5 \mathrm{~V}$
- B: 0 a $5,0 \mathrm{~V}$
- Output Current: 4 a 20mA

Other amplitudes are available on request, as the output types is fully programmable.

EXAMPLES OF CHARACTERISTIC CURVES*

*Other curves on demand

Figure 7 - Measuring range of 90° with center in 45°, clockwise increment, output 0,5 to $4,5 \mathrm{~V}$

Figure 8-90 Measuring range of 90° with center in 45°, counterclockwise increment, output 0,5 to 4,5 V

ASBR - Angular Sensor - Hub Shaft Preliminary Datasheet*

*Changes may occur without prior notice.

Figure 9 - Measuring range of 90° with center 135°, clockwise increment, output 0,5 to 4,5 V

Figure 10-Measuring range of 180° with center in 90°, clockwise increment, output 0,5 to $4,5 \mathrm{~V}$

ASBR - Angular Sensor - Hub Shaft Preliminary Datasheet*
 *Changes may occur without prior notice.

PINOUT

CODE 8 - CONNECTOR

- $\quad \mathrm{N}$ - Deutsch Male

- P - Delphi Male

Pin	Function
A	VCC
B	GND
C	Channel A+

- \quad S - Superseal Male

- $\quad 0$ - Cabo (without connector)

Dynapar - Brazil
Avenida Tamboré, 1077 - Tamboré - Barueri - SP
CEP: 06460-000
Telephone: +55 11 3616-0150
WhatsApp: +55 11 95301-6658
atendimento@sptech.com www.dynaparencoders.

All rights reserved.

[^0]: * Another option on demand

